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Abstract - The Development of different navigation strategies 

for Unmanned Aerial Vehicles has been under scientific 

research for the last few decades and resulted in the 

construction of a variety of aerial platforms. Currently, the 

main challenge that the scientific community is facing is the 

design of fully autonomous unmanned aerial vehicles having 

the competency of safely carrying out missions without any 

human intervention. In order to improve the guidance and 

navigation skills of these aerial platforms, the control pipeline 

of the UAVs is integrated with visual sensing techniques. The 

objective of this survey is to demonstrate an extensive review 

of the literature on vision-aided techniques for autonomous 

UAV navigation. Particularly on vision-based localization 

and UAV state estimation, collision avoidance, path planning, 

and control. In addition to this, throughout this article, we will 

provide an insight into the challenges to be addressed, current 

developments, and trends in autonomous UAV navigation. 
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I.  INTRODUCTION 

 An Unmanned Aerial Vehicle (UAV) can be defined as an 

aircraft that can navigate without the intervention of a human 

pilot. Nowadays, the deployment of UAVs is increasing more 

and more for regular applications, particularly for infrastructure 

inspection, and surveillance due to its high flexibility and 

mobility. Although, in several intricate environments, the UAV 

is unable to sense the local environment exactly due to the 

shortcomings of traditional sensors like poor perception ability 

and lack of stable communication with one another. In order to 

overcome these limitations a lot of effort has been made, 

however, a more effective and efficient method is still required 

to be developed. Hence, for the development and deployment 

of UAVs, a high-performance capability of autonomous 

navigation is of great significance. 

 

A. UAV navigation 

     UAV navigation is a process of planning a path to navigate 

quickly and safely to the target location using only the 

information about the current location and environment. In 

order to carry out the entire programmed mission successfully, 

a UAV must be completely sensible of its position, pose, 

turning direction, forward speed, starting position, and location 

of the target. Until now, several methods for UAV navigation 

have been put forward by researchers and can be categorized 

into three types: satellite navigation, inertial navigation, and 

vision-based navigation. Yet, these approaches alone are not 

ideal for fully autonomous UAV navigation. Therefore, it is 

difficult to go for the most relevant method for autonomous 

UAV navigation depending upon the particular task. Although, 

after reviewing the proposed methods for UAV navigation 

under each category, vision-based navigation is a promising and 

primary research area with the growing research and 

development in the field of computer vision. The visual sensors 

that are used in vision-based autonomous navigation have 

several advantages over traditional sensors. First,  the on-board 

cameras can provide a good amount of online information about 

the surrounding environment; Second, they are perfect for the 

perception of the rapidly changing environment because they 

possess a valuable anti-inference ability; Third, generally, most 

of the visual aided sensors are unassertive, that is, they don't 

allow the detection of sensing system. The United States and 

Europe have already developed research institutions for 

http://www.jetir.org/


© 2022 JETIR November 2022, Volume 9, Issue 11                                                   www.jetir.org (ISSN-2349-5162) 
 

JETIR2211571 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f557 
 

navigation of aerial vehicles, such as Johnson Space Center of 

NASA [32]. Massachusetts Institute of Technology [44], the 

University of Pennsylvania [34] and several other top-ranked 

institutions are also rapidly developing research in the field of 

vision-based autonomous UAV navigation and have embodied 

this automation technique into transport systems of next-

generation such as NextGen [80] and SESAR [35]. 

The illustration of vision-based navigation is presented in Fig 

1.  

 Through the usage of inputs from proprioceptive and 

exteroceptive sensors, a UAV would be able to steer safely 

towards the location of the target after completing the tasks of 

state estimation, collision detection and avoidance, and motion 

planning. 

 
Fig 1:   Vision-based UAV navigation system 

 

B. UAV classification 

 After going through all the benchmark studies we classified 

UAVs into the following four types: 

Fixed-Wing: These kinds of aircraft are incorporated with a 

rigid wing and a predetermined airfoil that generates lift due to 

the forward airspeed of the UAV, thereby making the flight 

possible. The forward airspeed of a UAV is produced by the 

thrust generated by a propeller in the forward direction. In 

addition to this, these aircraft are generally characterized for 

their high speed of voyage and high endurance mainly utilized 

for long-range, long-distance, and high altitude flights. 

Rotatory-Wing: These aircraft are characterized by their 

ability to carry out tasks that need hovering of the flight. They 

have rotors made up of blades in continuous motion, which are 

required to produce lift by generating airflow. These aerial 

platforms are also known as vertical take-off and landing 

(VTOL) rotorcraft and are capable of a heavier payload, easier 

take-off and landing, and finer control than fixed-wing aircraft. 

Flapping-Wing: These micro-UAVs are generally known for 

reproducing the flight of insects or birds. They have extremely 

low endurance and low payload capability due to their reduced 

size. These UAVs consume less power and are capable of 

performing vertical take-offs and landings with flexibility. 

Airship: An airship also known as a dirigible is a “lighter-than-

air” UAV that is propelled and driven across the air by utilizing 

propellers and rudders or other thrusts. By cushioning a large 

cavity with a lifting gas like a balloon, these aircraft can fly 

upwards. Non-rigid(or blimps), semi-rigid, and rigid are the 

three main types of Airship. A non-rigid airship or blimp is a 

kind of “pressure-airship”, that is the lighter-than-air vehicle 

that can be steered, powered, and its shape remains preserved 

by the pressure of gases within its envelope. These air vehicles 

are suitable for long-duration flights as no energy is required 

for lifting them, so that saved energy can be leveraged as a 

source of power for the movement of actuators, thus allowing 

flights of long-duration. Furthermore, these aircraft are capable 

of navigating with safety at low levels, close to people and 

buildings of the local environment. Fig 2 represents the 

discussed four classes of UAVs.  

      

 
 (a)          (b) 

         
 (c)                          (d) 

 

Fig 2: Classification of Unmanned Aerial Vehicles(UAVs): 

(a) Fixed-Wing UAV(image source: Jorge et al. (2017)[94]); 

(b) Rotatory-Wing UAV (image source: 

(https://www.shoghicom.com/unmanned-air-vehicle.php);  

(c) Flapping-Wing UAV(image source: 

(https://www.asme.org/topics-resources/content/engineering-

a-robotic-bird-like-no-other)); (d) Airship(image source: 

(https://aerovehicles.net/avi-airship/av-10-airship)) 

 

C. On-board UAV sensors 

 Usually, Unmanned Aerial Vehicles acquire information of 

surroundings as well as states of their own through both 

proprioceptive and exteroceptive sensors. The conventional 

sensing devices used for UAV navigation are generally 

gyroscope, Inertial navigation system (INS), axis 

accelerometer, and global positioning sensor (GPS). However, 

these sensors are likely to affect the localization and navigation 

of UAVs. One of the biggest drawbacks of the Inertial 

navigation system (INS) is the generation of bias error which is 

caused by the problem of integral drift and results in decrement 

of accuracy to a certain extent. Also, the Global positioning 

system has limited reliability, since in some areas such as 

indoor environments, its precision is too low or it is not present 

at all. Furthermore, minute errors of angular velocity and 

acceleration are continuously engulfed into the errors (either 

linear or quadratic in nature) of velocity and position. 

        Therefore, one of the reasons for the limited use of UAVs 

in applications of both life and production is the improper 

functioning of traditional sensors. In order to cope up with these 

issues, the researchers are being more bothered about the use of 

state-of-the-art techniques for the enhancement of both the 

robustness and accuracy of the pose estimation. Ideally, one can 

acquire a much better estimation of the UAV’s state by using a 
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fusion of multi-sensor data [11], which integrates the 

advantages of a variety of multiple sensors. However, restricted 

to particular environments, such as areas where GPS signal is 

unavailable, it is assumed that the incorporation of multiple 

sensors in small UAVs would be unnecessary and impractical. 

Therefore, a more typical approach is needed for the 

enhancement of UAVs’ perception ability of the environment. 

After comparing visual sensors to ultrasonic sensors, laser 

lightning, GPS, and other traditional sensors, we conclude that 

visual sensors capture much better information of surroundings 

with texture, the color of surrounding objects, and other visual 

details. Additionally, they can be deployed easily as well as 

they are cheaper, hence, this is the reason why vision-aided 

autonomous UAV navigation is tending to be a relevant topic 

in current research. The visual sensors which are commonly 

used for vision-based navigation are divided into four types as 

shown by Fig 3: monocular, stereo, RGB-D, and fisheye. 

Monocular visual sensors are generally used in operations 

where minimum weight and compactness are required. 

Furthermore, they are cheap and can be easily deployed into 

UAVs. However, they are not capable of obtaining a depth map 

of the surrounding environment. When two monocular cameras 

of the same configuration are mounted on a rig then this system 

becomes a stereo camera. Therefore, a stereo camera is not only 

capable of providing information that a single monocular 

camera can give but also offers some further advantages of dual 

views. Additionally, it can be used to obtain depth maps using 

the principle of parallax without the support of infrared sensors. 

RGB-D cameras are capable of simultaneously generating 

depth maps and visible images using infrared sensors. They are 

mostly used in indoor environments due to the restricted scope 

of infrared sensors. Fisheye visual sensors are adapted from 

monocular visual sensors with the additional capability of 

providing a broad viewing angle and additional capability of 

obstacle detection in complex environments. 

 

 

 

 
    (a)                                            (b) 

 

 
  (c)                                                      (d) 

 

       

Fig 3: Typical visual sensors. (a) monocular camera; (b) stereo 

camera; (c) RGB-D camera; (d) fisheye camera 
 

D. Previous Review Studies 

 Some of the researchers have carried out a survey of different 

techniques that could be used for autonomous UAV navigation 

and presented their valuable remarks and conclusions on those 

methods. 

 Kanellakis and Nikolakopoulos (2017) [40] presented a survey 

on vision-based methods that can be used for autonomous UAV 

navigation focusing mainly on current developments and 

trends. They discussed three steps that are required for 

autonomous flight: Navigation, Guidance, and Control. 

Navigation is further divided into the task of vision-based 

localization and mapping, obstacle avoidance, and aerial target 

tracking. Similarly, the guidance includes path planning, 

mission planning, and exploration. And then in last, the control 

task constitutes estimation of Attitude, position, velocity, and 

acceleration. Furthermore, the authors presented certain 

challenges that one have to face in implementing a vision-based 

autonomous UAV navigation system, such as lack of solid 

experimental evaluation in the integration of visual sensors in 

the UAV ecosystem, In spite of the development of elaborated 

SLAM algorithms for applications of vision-based systems, 

most of them cannot be used directly for UAV because of 

certain limitations posed by their processing power and 

architecture and the challenge imposed due to the incapability 

of UAVs to just stop operating in the state of great uncertainty 

like ground vehicles. Additionally, they presented their views 

on future trends in vision-based autonomous UAV navigation. 

According to them in the near future UAVs could get turned 

into the evolving elements in various applications as they 

possess some powerful characteristics like versatile movement, 

lightweight chassis, and onboard sensors. Also, they predicted 

that the techniques for mapping the surroundings will be further 

researched and revised for dynamic environments. 

Furthermore, they talked about the ongoing research on 

incorporating robotic arms/tools into UAVs so as to increase 

their competencies in aerial maneuver for several tasks, such as 

regular inspection, maintenance, and service. However, the 

authors don't discuss the vision-based navigation techniques 

that completely rely upon the front camera of UAV for self 

localization, mapping, and control. Furthermore, in the section 

visual localization and mapping the authors have mentioned 

about the techniques that utilize both the monocular camera and 

Inertial measurement unit (IMU) of the UAV. In these 

techniques the data from IMU sensors and camera are fused 

together and fed to an Extended Kalman filter (EKF) that would 

further estimate the pose, attitude, and velocity of the vehicle 

for flight control. The drawback in these techniques is that these 

techniques use additional IMU sensors for autonomous UAV 

navigation. The recent state-of-the-art works solve this issue by 

using ORB SLAM for pose estimation of the UAV and creating 

the map of the environment by leveraging only a monocular 

camera. Therefore, this review lacks the discussion about the 

latest state-of-the-art techniques that utilize only the front 

http://www.jetir.org/


© 2022 JETIR November 2022, Volume 9, Issue 11                                                   www.jetir.org (ISSN-2349-5162) 
 

JETIR2211571 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f559 
 

camera of the UAV for the fully autonomous navigation in 

GPS-denied areas. 

Lu et al. (2018)[95] present a comprehensive review of the 

vision-based UAV navigation methods. In this review the 

process of UAV navigation is described in three steps: visual 

localization and mapping, obstacle avoidance, and path 

planning. In visual localization and mapping authors discussed 

various methods that can estimate the position, attitude, and 

velocity of the UAV. These methods may or may not use the 

map of the environment. The methods that utilize the map of 

the environment are further divided into two types: map-based 

and map building systems. Map-based systems require a priori 

map of the environment according to which they plan the 

navigation and control strategy of the UAV. Map-building 

systems leverage vision-based SLAM algorithms like ORB 

SLAM and PTAM that can build the map of the environment as 

a UAV moves forth, and localize the UAV in the environment 

by estimating its position coordinates. The second category of 

visual localization methods doesn’t require any map of the 

environment for localizing the UAV in the environment. These 

methods include optical flow, and feature tracking techniques. 

The authors haven’t discussed the state-of-the-art deep 

reinforcement learning methods under this category for 

localizing and navigating UAV in the given environment. For 

obstacle detection and avoidance the review lacks the 

discussion on the latest developments in this field. The 

algorithms that are discussed by the authors are optical-flow 

based and SLAM-based. However, these algorithms take much 

more processing time, hence not efficient for on-board 

utilization. Instead, many recent AI-based obstacle avoidance 

algorithms are proposed that can be executed during flight and 

take less computational time for sending response to the UAV. 

Furthermore, the authors of the review have discussed only 

classical path planning algorithms like A-star, RRT, Ant-colony 

optimization, etc. They don't present their review on the state-

of-the-art AI-based path planning algorithms that perform much 

better than the traditional algorithm in terms of complexity, and 

computational time in unknown, dynamic, and large-scale 

environments. Along with this, the authors don't mention about 

the papers who have conducted real world experiments with the 

fully autonomous UAV by incorporating all the steps of 

autonomous navigation. 

 Later on, Belmonte et al. (2019) [6] carried out extensive 

research on the vision-based autonomous navigation method. 

He divides the UAV vision-based task into four subtasks: 

navigation, control, tracking or guidance, and sense-and-avoid. 

According to their review, the navigation task includes figuring 

out the position and orientation of an aircraft using visual 

sensing devices. Then, in the next step authors discussed the 

control of aircraft position on the basis of the data of 

surroundings captured by visual sensors. They further state that 

in the past few years several methods have been proposed for 

vision-based control of UAV. One of these methods is control 

using visual servoing. When the visual data of the surrounding 

environment is directly incorporated into the control loop, this 

is known as visual servoing. Therefore, in this technique, the 

control law depends on the error signal ascertained from data of 

the surrounding environment obtained through visual sensors. 

After this, the authors discussed the next subtask, that is, vision-

aided tracking or guidance. According to them, the control 

system of UAVs leverages relative navigation for achieving a 

flight with respect to a target. Finally, vision-aided sense-and-

avoid (SAA) is needed for a fully autonomous UAV system in 

order to sense and avoid obstacles in both static and dynamic 

environments. In the benchmark works reviewed by authors, 

the researchers used one or more visual sensors for detecting 

possible collisions with obstacles including other UAVs in the 

environment, and for determining the necessary actions 

required for achieving control over the flight which is free from 

collisions. Then, in the end, the authors concluded that the best 

system that could be used for autonomous navigation is the 

monocular UAV system as it is easier to install and allow the 

users to reduce the payload of UAV. Furthermore, the authors 

suggested that virtual reality would be an important aspect in 

the development process of personal UAVs as it would help in 

conducting experiments with UAVs in realistic indoor 

environments containing different kinds of obstacles, as well as 

in outdoor environments.  

E. Motivation of this review 

 The objective of this survey is to present an outline of the most 

important vision-based navigation methods that can be used for 

autonomous UAV navigation. Furthermore, a collection of 

benchmark studies is provided that could act as a guideline for 

future research towards vision-based autonomous aerial 

exploration. In [83] authors proposed a fact that with the rapidly 

developing popularity of small-sized commercial UAVs and the 

huge development of computer vision, the combination of both 

of them, that is, vision-based UAV navigation has been a 

working research area. Seeing that, the field of Computer vision 

for aerial vehicles is emerging as a popular trend in autonomous 

navigation, hence the presented work will focus only on 

reviewing the fields of localization and mapping, obstacle 

detection and avoidance, and path planning. The essence of this 

work is to provide rich insight into the entire task of 

autonomous UAV navigation collecting all pieces together. 

UAV state estimation includes the extraction of distinct features 

from the surrounding environment with the aid of visual 

sensors, so as to determine the next step of UAV in the 

environment. We categorized this phase into three categories: 

optical flow and machine learning based systems, sensor based 

systems, and Visual SLAM based systems. Where the Visual 

SLAM based methods are divided into feature based SLAM 

methods, intensity based methods, hybrid methods, and Visual 

inertial SLAM based techniques. As the size of the inertial 

measurement unit (IMU) is getting cheaper and smaller, hence 

Shen et al. 2014 [75] and Leuteneggar et al. 2015 [45] proposed 

and developed a navigation system in which they fused inertial 

measurement unit (IMU) and visual measurements together for 

obtaining better performance results. In order to circumvent the 

limitations on power consumption and perception ability that 

make a single UAV incapable of completing certain types of 

tasks, In [29,57] it is shown that with the enhancement of 
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autonomous navigation, multiple UAVs can carry out such 

tasks together. Then in the next step, the task of obstacle 

detection and avoidance is discussed. The basic principle of this 

task is to sense and avoid obstacles and determine the distances 

between those obstacles and a UAV. When a UAV reaches an 

obstacle then it is required to avoid or turn around under the 

directions provided by the obstacle avoidance module. We 

provide a review of two kinds of obstacle avoidance techniques: 

obstacle avoidance using optical flow and obstacle avoidance 

using the visual SLAM approach. In [17,39,55,58,63,85] 

researchers have proposed different solutions which exploit 

cameras as the only visible sensing devices for obstacle 

avoidance in composite, unstructured, dynamic, and extensive 

environments. Then finally, we provide a review on path 

planning. In this step, local path planning and global path 

planning (trajectory generation) are incorporated for 

application-wise decision making, motion planning, or 

exploration of areas that are new and unknown. Leveraging all 

these steps, Wang et al. 2020 [89] proposed and developed a 

system for autonomous exploration with impressive progress in 

the task of vision-aided autonomous navigation, however, the 

development of fully autonomous navigation systems is still a 

challenge due to various unsolved problems in their designing 

process, such as autonomous obstacle avoidance, generation of 

an optimized path in non-static situations, and dynamic 

assignment of operations. 

The remaining paper is categorized as follows: First, in section 

II, we present three different types of vision-based UAV state 

estimation techniques. Next in section III, we introduce a 

review of collision detection and avoidance methods in 

autonomous navigation. After that, in Section IV, we focus on 

the path planning and vision-based control approaches for 

autonomous UAV. Then, in Section V we mentioned the 

experiments that have been carried out with a physical UAV for 

applying vision-based autonomous navigation strategy to real 

world problems. Finally, in section VI we present a conclusion 

with additional analysis on difficulties and directions for future 

research in the field of vision-aided autonomous UAV 

navigation. 

 

II.  VISION-BASED UAV STATE ESTIMATION 

 On the basis of the techniques that can be used to determine the 

state of the UAV and create the map of the surrounding 

environment for autonomous navigation, visual localization 

and mapping systems can be categorized into three classes: 

Optical flow and machine learning based system, Visual SLAM 

based system, and Sensor based (Inertial) system [15], as shown 

by Fig 4. 

 

 

 
Fig 4:   Visual localization and mapping systems. 

 
 

 

A. Optical flow and Machine learning based systems 

 A UAV localization system, developed using optical flow and 

machine learning based techniques is capable of navigating 

without a prior map of the environment, and aerial vehicles 

following this approach navigate only through the extraction of 

distinct features from the observed environment. Nowadays, the 

most commonly used mapless-system-based methods for 

localization and mapping are feature tracking methods, optical 

flow methods, and machine learning techniques. Optical flow 

methods can be divided into two classes: local methods [50] and 

global methods [33]. In [72] a technique that can imitate the 

flying style of a bee through the estimation of the movement of 

objects by using visual sensors on the two sides of an 

autonomous aerial vehicle has been discussed. First, it estimates 

the ocular speed of both the visual sensors that are parallel to 

the barrier, respectively. If the optical velocities come out to be 

equal then the robot proceeds in the direction of the central line; 

otherwise, it goes forward with the pace of small places. 

Although, it might not have good performance while navigating 

in environments with texture-less walls. However, in recent 

years a significant growth of optical flow-based techniques has 

been made with some advancements in the field of detection, 

inspection, and tracking. Recently, in [62] authors proposed a 

novel approach for scene change detection using and describing 

the optical flow. Furthermore, in [31] researchers have worked 

on flight landing and hovering maneuvers upon a proceeding 

ground vehicle by fusing measurements obtained through 

optical flow techniques together with an inertial measurement 

unit (IMU). Even various challenging tasks, like surveillance 

and tracking of the target, can be achieved with systems using 

heavy optical flow computation as they can identify the 

maneuver of all the objects in motion [54]. In the field of 

localization and mapping, the feature tracking method [13] has 

become a standard and robust approach. This method can 

determine the maneuver of an obstacle through the detection of 

invariant features including corners, lines, and so on, and their 

corresponding movement in sequential images. The unvarying 

attributes of the surrounding environment that have been 

noticed previously are needed to be observed again from 

multiple viewing angles, illumination conditions, and distances 

during the task of robot navigation [84]. Basically, sparse 

features that can be used in localization and mapping are not 

suitable for obstacle avoidance as they are not dense enough. A 
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behavioral method for navigation that utilized a system capable 

of recognizing visual landmarks combined with a fuzzy-based 

obstacle avoidance system was proposed by authors of [48]. 

Hui et al. (2018)[37] proposed a vanishing point-based 

approach for localization and mapping of autonomous UAVs to 

be used for safe and robust inspection of power transmission 

lines. In this proposed method authors regarded the 

transmission tower as an important landmark by which 

continuous surveillance and monitoring of the corridor can be 

achieved. Similarly, deep reinforcement learning based 

methods have also been used for estimating the state of the 

UAV and localizing it in the unknown environments without 

the need of a prior map of the environment. Following this 

approach, Huang et al. (2019)[116] proposed a Deep-Q network 

based method for autonomous UAV navigation. In the proposed 

approach the deep neural networks are integrated with 

reinforcement learning to overcome the limitations of 

reinforcement learning as it cannot be used to solve a complex 

problem alone. Similarly, Grando et al. (2020)[118] proposed a 

mapless navigation strategy for UAVs. The proposed approach 

leveraged two deep reinforcement learning based algorithms, 

Deep deterministic policy gradient (DDPG) [96] and Soft actor 

critic (SAC) [97]. The information about the relative position 

of the vehicle from target and vehicle’s velocity are obtained 

through the reading of laser sensor mounted on UAV and 

localization data. This navigation approach is completely 

mapless and doesn’t need any heavy softwares like ORB SLAM 

and LSD SLAM to create the map of the environment. For both 

DDPG and SAC methods, the network consists of 24 inputs and 

2 outputs. The 24 inputs include 20 laser readings, 2 readings 

of previous linear velocity and yaw angle, and 2 readings are 

from the relative position of the UAV and angle to the target. 

And, 2 outputs are values of the linear velocity of the UAV and 

the yaw angle which are required to control the UAV. The 

authors of this work have verified the performance of their 

technique by comparing their navigation strategy of UAV with 

geometry based tracking controller on the Gazebo simulator. In 

the simulation environment without obstacles the geometry 

based tracking controller performs better whereas, in the 

presence of obstacles the proposed performs better as in that 

case the UAV navigating with the tracking controller collides 

with the obstacles. Some researchers have also applied deep 

neural networks to UAV localization problem. Li and Hu 

(2021)[98] proposed a mapless, deep learning based 

localization technique for the auto landing of unmanned aerial 

vehicles at a specified target. The proposed approach is based 

on ground-vision based methods in which two stereo cameras 

are installed or fixed on two independent Pan-tilt units (PTUs) 

symmetrically to capture the images of the vehicle at the time 

of landing. Furthermore, this work is based on deep learning, in 

which two deep neural networks are leveraged, Bbox-locate-

Net and Point-Refine-Net. The images captured by the ground 

visual system are fed as an input to the Bbox-Net which predicts 

the coordinates for the bounding box of the target. Then, after 

combining these coordinates with the PTUs’ parameters, the 

spatial position of the UAV can be determined. On the basis of 

Extended Kalman Filter (EKF) based object spatial localization 

algorithm, the motion continuity of the UAV can be checked. 

In case, the coordinate is not correctly estimated, then it would 

be given as an input to the Point-Refine-Net for precise 

prediction of the key points coordinates for the bounding box 

of the target. Furthermore, in order to improve the state 

estimation accuracy of the UAV, some researchers have also 

proposed techniques which integrate deep neural networks, and 

reinforcement learning. Following this idea, Afifi and Gadallah 

(2021)[99] proposed a 3-D localization method for a UAV 

using deep learning and reinforcement learning. In this 

research, authors leverage a 5-G cellular network of 4 ground 

base stations, and in order to determine the location of UAV 

with minimum error the problem is reduced to optimization 

problem where objective is to minimize the error in the 

measurement of RSSI (Radio received signal strength index) 

readings of the 4 ground base stations. In order to estimate 

location of the UAV in real-time a deep learning model is 

trained using the correlation between RSSI readings and UAV 

localization, further to improve the real-time performance of the 

proposed model, the authors also introduced reinforcement 

learning to their work and compare the localization results with 

those obtained from deep learning-based approach. After 

carrying out the analysis of the results, the authors conclude that 

for a small region with less dynamic obstacles, deep 

reinforcement learning gives better results but it is more 

computationally expensive, however for larger and crowded 

environments with dynamic obstacles, the deep learning 

approach performs better. Along with this, there are several 

mapless localization techniques which determine the location 

of UAV using feature matching between the UAV-satellite 

image pairs. Goforth and Lucy (2019)[100] proposed the CNN 

based method to estimate the position of the UAV in an 

unknown environment. In this method a convolutional neural 

network extracts feature representations from UAV-satellite 

image pairs given as an input to the network. By leveraging 

these extracted feature representations, the images of UAV are 

aligned with the ground-referenced satellite images and the 

location of the UAV is estimated. Similarly, Hou et al. 

(2020)[101] proposed a deep learning based technique for 

mapless UAV localization which integrates the digital 

evaluation model (DEM) and the deep learning architecture D2-

Net. The D2-Net architecture is responsible for the extraction 

of keypoints and matching of satellite-UAV images. The idea 

behind this is to combine the obtained geological map of the 

area from DEM with the keypoint features to get the 3-D 

position coordinates of the key points in the UAV image. 

Subsequently, Bianchi and Barfoot (2021)[8] demonstrated a 

robust and fast method for localization of a UAV using satellite 

images which were further utilized for training autoencoders. In 

this work, the authors collected Google Earth (GE) images, and 

then an autoencoder model is trained to compact these images 

in order to represent them as a low-dimensional vector without 

distorting important features. The trained autoencoder model is 

further trained to reduce the size of a real-time image captured 

by UAV which is then compared with the pre-collected 
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autoencoded GE images by using an inner-product kernel. 

Hence, localization of a UAV can be achieved by distributing 

weights over the relative GE poses. The evaluation results of 

this work have shown that the proposed approach is able to 

achieve root mean square error (RMSE) of less than 3m in real-

time experiments. 

 

B. Sensor based systems  

 These UAV systems leverage inertial unit, bioradar, lidar 

sensor, etc to explore the environment with divergence and 

ability of movement planning after defining the spatial 

configuration of the surroundings in a map. Therefore, with the 

aid of these sensors a static map of the environment can be 

obtained prior to navigation. Typically, environmental maps 

can be classified into two types: occupancy grids and octree. 

Each and every detail of the environment, varying from the 3D 

illustration of the environment to the interdependencies 

between environmental elements are included in these maps. In 

[22] authors presented a method that used a 3D volumetric 

sensor that can enable an autonomous robot to efficiently 

explore and map urban environments. In their work, they 

constructed the 3D model of the environment using a multi-

resolution octree. Later on, for the depiction of the 3D model of 

the environment, an open-source framework was developed 

[33]. Basically, the approach here is to render the 3D 

representation of the environment octree. Although not only 

using the preoccupied area but also unknown and unoccupied 

space. In addition to this, by using an octree map compression 

technique, the represented model is made to occupy less space 

which makes the system capable of storing and updating the 3D 

models efficiently. Authors of [27] collected and processed data 

of the surroundings using a stereo camera, which can be 

leveraged further to produce a 3D map of the environment. The 

key of this approach is the extended scan line grouping 

technique that the authors used for precise segmentation of the 

range data into planar segments. This approach can also 

effectively confront noise present in the depth estimated by the 

stereo vision-based algorithm. Dryanovski et al. (2010)[16] 

proposed a method that represents a 3D environment by using 

a multi-volume occupancy grid which is a cable of explicitly 

storing information about both free space and obstacles. In 

addition to this, by fusing and filtering in new positive or 

negative sensor data incrementally, the proposed method can 

correct previous sensor readings that were potentially 

erroneous.  

 

C. Visual SLAM based system 

     Many times, it is difficult for a UAV to traverse in the air 

with a previously known map of the surroundings obtained 

through UAV sensors due to certain environmental limitations. 

In addition to this, it would be unfeasible to acquire information 

of the target location in extreme cases (such as in calamity-hit 

areas). Therefore, in such situations, it would be a more 

efficient and attractive solution to go for simultaneous 

localization and mapping at the time of navigation. SLAM 

based robot navigation has been tremendously used in both 

semi-autonomous and fully autonomous disciplines, and this 

technique for state estimation and building map of the 

environment is getting popular rapidly along with the 

expeditious growth of visual simultaneous localization and 

mapping (visual SLAM) methods [4,79]. The size of the UAVs 

available in the market nowadays is shrinking, which restricts 

their competency of lifting payload in some measure. Hence, 

researchers and developers have been more focused on the 

usage of manageable and lightweight visual sensors rather than 

the conventional heavy sonar and laser radar, etc. Stanford 

CART Robot [59] carried out the first attempt at single camera-

based map-building techniques. Later on, the detection of 3D 

coordinates of images was improved using a modified version 

of an interest operator algorithm. The result that was expected 

from this system was the demonstration of 3D coordinates of 

obstacles, which were placed on a mesh with each square cell 

of length 2m. However, this technology is capable of 

reconstructing the obstacles in the environment but still, it 

cannot model a large-scale world environment. Afterward, in 

order to recover states of cameras and structure of the 

environment simultaneously, vision-aided SLAM techniques 

have made a good amount of progress and resulted in four kinds 

of Visual SLAM techniques: feature-based, intensity-based, 

hybrid, and visual-inertial according to the method of image 

processing by visual sensors. Wang et al. (2020) [89] proposed 

and developed an efficient system for autonomous 3D 

exploration with UAV. The authors put forward a systematic 

approach towards robust and efficient autonomous UAV 

navigation. For localization of UAV, the authors leveraged a 

map of the environment which was constructed incrementally 

and preserved during the process of inspection and sensing. 

This road map is responsible for providing the reward and cost-

to-go for a candidate region that is to be investigated and these 

are the two measures of the next best view (NBV) based 

evaluation. The authors verified their proposed framework in 

various 3D environments and the results obtained exhibit the 

typical attributes in NBV selection and much better 

performance of their approach in terms of the efficiency of 

aerial analysis as compared to other methods. 

 

1) Feature-based SLAM 

      Feature-based SLAM systems first detect and extract 

attributes from multi-media data and then use these features as 

inputs for localization and estimation of motion instead of using 

the images directly. Generally, the extracted features are 

assumed to be uniform to viewpoint changes and rotation, as 

well as robust to noise and blur. In the past few years, thorough 

research on detection and description of features has been 

carried out and several types of attribute identifiers and 

descriptors have been proposed [47,86]. Therefore, most of the 

recently proposed SLAM algorithms are supposed to operate 

under this attribute-based framework. In [14] authors proposed 

a monocular vision-based localization along with the mapping 

of a sparse set of natural attributes based on a top-down 

Bayesian framework for achieving real-time performance. This 

work is a landmark for monocular vision-aided SLAM and has 
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a considerable influence on subsequent research. Klein and 

Murray (2007) [41] proposed an algorithm for parallel tracking 

and mapping. This is the first algorithm that divides the SLAM 

system into two independent parallel threads: tracking and 

mapping which is the standard of current feature-based SLAM 

systems. A state-of-the-art approach for large-scale navigation 

was proposed by the authors of [53]. Common issues in large-

scale environments, such as relocation of trajectories are being 

corrected by visual loop-closure detections. Celik et al. (2009) 

[12] proposed a visual SLAM-based system for navigation in 

unknown indoor environments without the aids of GPS. UAVs 

have to predict the state and range using only a single onboard 

camera. Representing the environment using energy-based 

straight architectural lines and feature points in the heart of the 

navigation strategy. In [30] researchers presented a vision-

based attitude estimation method that leveraged multi-camera 

parallel tracking and mapping (PTAM) [41]. PTAM first 

integrates the estimates of the 3D motion of multiple visual 

sensors within an environment and then correlates the mapping 

modules and state estimation. A state-of-the-art approach is also 

demonstrated by the authors to calibrate external parameters for 

systems using multiple visual sensors with well-separated fields 

of view.  

Although, many of the feature-based SLAM methods are able 

to reconstruct only a specific set of points as they pull out only 

sharp feature points from images. These types of methods are 

called sparse feature-based methods. So, researchers have been 

anticipating that more enhanced and dense maps of the 

environment could be reconstructed by the dense feature-based 

methods. A dense energy-based method is exploited by 

Valgaerts et al. (2012) [88] for the estimation of an elementary 

matrix and for further calibration of similarities by using it. 

Ranftl et al. (2016) [66] used a segmented optical flow field for 

producing a rich depth map of the surroundings from two 

successive frames, which means that adhering to this 

framework through optimization of a convex program could 

result in a dense reconstruction of the scene. 

 

2) Intensity based SLAM 

     SLAM techniques that leverage the features of captured 

images for building a map of the environment seem to exhibit 

better performance in only ordinary and simple environments. 

However, they faced difficulties in texture-less environments. 

Therefore, the intensity based SLAM came into play. Visual 

SLAM algorithms based on this approach optimize geometric 

parameters by exploiting all the information regarding intensity 

present in the images of the surroundings, which can give 

strength to geometric and photometric deformations present in 

images. Furthermore, this strategy can find dense resemblances 

so they are capable of reconstructing a dense map at an 

additional price of computation. In [76] researchers presented a 

state-of-the-art approach for the estimation of scene structure 

and pose of the camera. In this work the authors directly utilized 

intensities of the image as observations, thereby, leveraging all 

data present in images. Hence, for the surroundings with few 

feature points, the proposed approach is proved to be much 

better and robust than feature based methods. Authors of [61] 

proposed a monocular visual SLAM algorithm that can perform 

in real-time, DTAM, using intensity of the images can also 

predict the 6 DOF motion of a camera. At a frame rate derived 

from the predicted comprehensive textured depth maps, the 

proposed algorithm is capable of generating dense surfaces. To 

provide the approximation for semi-dense maps authors of [18] 

proposed and developed an efficacious stochastic intensity 

based method, which can be utilized further for the calibration 

of images. Rather than optimizing parameters without using a 

scale, LSD SLAM [18] uses a different approach that exploits 

pose graph optimization, which allows loop closure detection 

and scale drift correction in real-time by explicitly taking scale 

factors into account. Krul et al. (2021) [42] presented and 

developed a visual SLAM-based approach for the localization 

of a small UAV with a monocular camera in indoor 

environments for farming and livestock management. The 

authors compared the performance of two visual SLAM 

algorithms: LSD-SLAM and ORB-SLAM and found that ORB-

SLAM based localization suits best at those workplaces. 

Further, this algorithm was tested through several experiments 

including waypoint navigation and generation of maps from the 

clustered areas in the greenhouse and a dairy farm. 

 

3) Hybrid method 

       The hybrid method is a combination of both feature based 

and intensity based SLAM methods. The first step in the hybrid 

method includes initialization of feature correspondences by 

using intensity based SLAM, then in the next step, the camera 

poses are refined continuously using feature descriptor SLAM 

algorithm. In [20] authors proposed an innovative semi-direct 

algorithm (SVO), for the estimation of the states of a UAV. 

Similar to PTAM, this algorithm also implements motion 

estimation and mapping of point clouds in two different threads. 

A more accurate pose estimation can be obtained using SVO by 

combining gradient information and pixel brightness with the 

calibration of feature points and loss in reprojection error. 

Subsequently, for real-time landing spot detection and 3D 

reconstruction of the surroundings, the authors of [21] proposed 

and developed an algorithm that is computationally efficient 

and capable of providing the best results in real-time 

performance. In order to carry out exploration of the real-world 

environment, a high frame rate visual sensor is required for the 

execution of a semi-direct algorithm, as it has limited resources 

to carry out the heavy computation. 

 

4) Visual Inertial SLAM 

     Bonin-Font et al. (2008) [9] developed a system for the 

navigation of ground mobile robots in which they utilized laser 

scanners for accessing 3D point clouds of relatively good 

quality. Also, nowadays UAVs can be equipped with these laser 

scanners as their size is getting smaller. Though different kinds 

of measurements from different types of sensors can be fused 

together and this can enable a more robust and accurate 

estimation of the UAV state. A typical SLAM system, extended 

Kalman filter (MSF-EKF) can deal with multiple delayed 
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measurement signals for different types of sensors and provide 

a more robust and accurate prediction of the UAV attitude for 

robust control and navigation [51]. Magree and Johnson (2014) 

[52] proposed and developed a navigation system that exploits 

the fusion of an EKF-based inertial navigation system with both 

laser SLAM and visual SLAM. The monocular visual SLAM is 

responsible for finding data association and estimating the pose 

of the UAV, whereas the laser SLAM system is liable for scan-

to-map matching utilizing a Monte Carlo framework. Hu and 

Wu (2020) [36] proposed a multi-sensor fusion method based 

on the correction of an adaptive error using  Extended Kalman 

Filter (EKF) for localization of UAV. In their presented 

approach first, a multi-sensor system for localization is 

fabricated using acceleration sensors, gyroscopes, mileage 

sensors, and magnetic sensors. Then, the data obtained from 

these sensors is adjusted and compared in order to minimize the 

error from the estimated value. Finally, measurement noise and 

system noise covariance parameters in EKF are optimized 

through the transformative iteration mechanism of the genetic 

algorithm. Then, the authors figure out the adaptive degree by 

obtaining the absolute value of the difference between the 

predicted and the real value of EKF. Table 1 summarizes the 

algorithms for UAV state estimation and localization  cited in 

this review. 

 

Table 1:  Summary of important methods in vision-based UAV 

state estimation. 

 

Techniques used Sensors / 

algorithms used 

References 

 Monocular 

camera 

[33],[50],[54],[62

] 

Optical Flow Stereo Camera [72] 

 Multi-sensor 

fusion 

[31] 

   

Feature tracking Monocular 

camera 

[48],[84],[13],[37

],[8] 

 Reinforcement 

learning 

[116],[117] 

Machine learning Deep learning [98],[99],[100] 

 UAV-satellite 

image pairs 

matching using 

deep learning 

[101] 

Inertial odometry Stereo camera [27] 

 Depth camera [22],[16] 

 Feature-based 

SLAM 

[14],[41],[53],[12

],[30],[88],[66],      

[89]   

Visual SLAM Intensity-based 

SLAM 

[76],[61],[18],[42

] 

 Hybrid method [20],[21] 

 Visual-Inertial 

SLAM 

[59],[51],[52],[36

] 

 

III.  COLLISION AVOIDANCE 

     Avoidance of collision with obstacles in the navigation path 

is a crucial step in the process of autonomous navigation since 

with the help of this capability a robot can detect, avoid 

collision with nearby objects, and navigate safely without any 

risk of a crash. Thus, this method plays a key role in increasing 

the level of automation of UAVs. The main objective of 

obstacle detection and avoidance is to estimate the distances 

between the aerial vehicle and obstacles after detecting them. 

When the UAV is getting closer to obstacles, then it is required 

to stay away or take about-turn as per the directions of the 

collision avoidance technique used. Among those approaches 

that can be used to solve this problem, one is to use laser range 

finders such as radar, IR, and ultrasonic, etc for measuring the 

distance between a UAV and an obstacle. However, these laser 

range finders are unable to get enough information in complex 

environments, since they have limited measurement range and 

field of view. In order to overcome these issues, laser sensors 

could be replaced with visual sensors that can provide an ample 

amount of data, which can be further refined for obstacle 

avoidance. Typically, there are two types of approaches for the 

avoidance of obstacles: Optical-flow based techniques and 

SLAM-based techniques. Authors of [26] used the image 

processing technique for the avoidance of obstacles. By 

exploiting optical flow, this technique is capable of generating 

local information flow and depth maps of images. A novel 

approach for detecting the change in the size of obstacles was 

proposed in [1]. Their proposed method is based on the 

principle of how human eyes perceive objects. According to 

this mechanism, the obstacles in the field of view are becoming 

larger as the eyes get nearer to them. Using this concept, the 

authors of this work proposed an algorithm that can detect 

obstacles by comparing and contrasting the successive images, 

and figure out whether the object present in the navigation path 

is closer or not. Various optical flow methods based on bionic 

insect vision have also been proposed for obstacle avoidance. 

Authors of [77] were inspired by vision of bees and presented a 

simple and non-continual optical flow technique for estimating 

the self-motion of the system and global optical flow. After 

being persuaded by the optic nerve structure of insects, In [28] 

authors proposed and developed a basic unit for the detection 

of local motion. Similarly, a sensor based on the compound 

structure of the visual system of flies and a flow strategy were 

designed in [70]. These algorithms are based on binocular 

vision of insects and can be employed in UAVs. In the work of 

[7], a student of physics, Darius Mark put forward a technique 
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that leveraged only the speed of light for measuring distance 

between the objects. This approach is simple but efficient as 

many insects can detect the obstacles in the surrounding 

environment using light intensity. At the time of flight, the 

motion of the image produces a light flow signal on the retina, 

this visual flow for the vision-aided navigation of insects 

provides a variety of information of attributes present in space. 

Hence, insects can find out quickly whether they are able to pass 

by the obstacles safely or not, based on the intensity of light 

going through the aperture in the leaf. However, obstacle 

avoidance approaches based on the optical-flow method are not 

able to acquire precise distance due to which they are not used 

in several particular missions. In contrast, SLAM-based 

techniques can come up with a precise estimation of metric 

maps using an advanced SLAM algorithm, thereby making 

UAVs capable of navigating safely with a collision avoidance 

feature exploiting more environment information [23]. A novel 

technique of mapping a prior unknown environment using a 

SLAM system was proposed in [60]. Furthermore, the authors 

leveraged a state-of-the-art artificial potential field technique to 

avoid collision with both static and dynamic obstacles present 

in the surrounding environment. Later on, in order to cope up 

with the mediocre illumination of indoor environments and 

holding on the count of feature points, authors of [5] proposed 

a procedure for creating adjustable feature points in the map, 

which is based on the PTAM (Parallel Tracking and Mapping) 

algorithm. Subsequently, In [19] researchers proposed an 

approach based on oriented fast and rotated brief SLAM (ORB-

SLAM) for UAV navigation with obstacle detection and 

avoidance aspect. The proposed method first processes data 

from video by figuring out the locations of the aerial vehicle in 

a 3D environment and then generates a sparse cloud map. After 

this, it enhances the density of the sparse map, and then finally, 

it generates an obstacle-free map for navigation using potential 

fields and rapidly exploring random trees (RRT). Yathirajam et 

al. (2020) [90] proposed and developed a real-time system that 

exploits ORB SLAM for building a 3D map of the environment 

and for continuously generating a path for UAV to navigate to 

the goal position in the shortest time. The main contributions of 

this approach are: implementation of chain-based path planning 

with built-in obstacle avoidance feature and generation of the 

path for UAV with minimum overheads. Subsequently, 

Lindqvist et al. (2020) [49] proposed and demonstrated a 

Nonlinear Model Predictive Control (NMPC) for obstacle 

avoidance and navigation of a UAV. In this work, the authors 

proposed a scheme to identify differences between different 

kinds of trajectories to predict positions of future obstacles. The 

authors conduct various laboratory experiments in order to 

illustrate the efficacy of the proposed architecture and to prove 

that the presented technique delivers computationally stable and 

fast solutions to obstacle avoidance in dynamic environments. 

Subsequently, Guo et al. (2021)[102] proposed geometry based 

collision avoidance techniques for real-time UAVs navigating 

autonomously in 3-D dynamic environments. In the proposed 

obstacle avoidance technique first, the onboard detection 

system of the UAV obtains the information about the irregular 

obstacles encountered in the navigation path, then that obtained 

data is transferred to the regular convex bodies, which is further 

used for generating avoidance trajectories in the shape of 

circular-arc. Then, on the basis of geometric correlation 

between UAV and obstacle modelling, the real-time obstacle 

avoidance algorithm is developed for UAV navigation. Hence, 

the authors of this work formulate the obstacle avoidance 

problem as a trajectory tracking strategy. Following the idea of 

geometrical approach for collision detection and avoidance, 

Aldao et al. (2022)[103] presented and developed a collision 

avoidance algorithm for UAV navigation. The authors have 

proposed this method mainly for the purpose of inspection and 

monitoring in civil engineering applications. So, by keeping 

this use in mind, the collision avoidance strategy is developed 

for a UAV navigating between the waypoints following a 

predefined trajectory. Furthermore, in order to avoid the 

collision with dynamic obstacles like people, other UAVs, etc, 

the 3-D onboard sensors are also utilized to determine the 

position of these dynamic objects which are not considered in 

the original trajectory. The proposed technique is based on 

sense and avoid obstacle avoidance in which first after reaching 

the waypoint of predefined trajectory UAV takes the sample 

pictures and inertial measurements of the room to detect the 

presence of obstacles. If the obstacle is detected then in that case 

the position of that obstacle is registered in the point cloud of 

the inspection room at that moment of time otherwise the 

scheduled path will be followed. If a new obstacle is detected 

after completing the trajectory then its position will be 

determined using on-board 3-D sensors. Table 2 encapsulates 

the techniques used for collision detection and avoidance. 

 

Table 2:  Summary of important methods in collision 

avoidance. 

 

Collision 

avoidance 

techniques 

Methods used References 

Vision based Optical flow [77],[70],[28],[26

],[1] 

 NMPC [49] 

Potential field ORB-SLAM [19],[90] 

 PTAM [5] 

Geometrical 

algorithm 

Trajectory 

tracking 

[102] 

Sense and avoid Trajectory 

tracking; Multi-

sensor fusion 

[103] 

 

IV. MOTION PLANNING 

 Motion planning refers to the process of navigating safely from 

one place to another in presence of obstacles. It comprises two 
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tasks: path planning and control. Path planning is responsible 

for finding an efficient obstacle free path from source to 

destination which a UAV can follow, whereas control provides 

necessary commands to UAV for moving through that path 

without colliding with the obstacles. In this section, first we 

discuss different types of existing path planning approaches and 

then we demonstrate the review of the existing literature on 

different strategies of vision-based control for UAV. 

A.  Path planning 

  Planning of a collision-free path for safe navigation of an UAV 

is an essential step in the task of autonomous UAV navigation. 

Path planning is required for finding a best path from the initial 

point to the location of the target, on the basis of certain 

performance indicators like the less price of work, the shortest 

time of flight, and the shortest flying route. At the time of path 

planning, the UAV is also required to avoid obstacles. Based on 

the environmental information that is to be utilized for 

computing an optimal path, the problem of path planning can 

be classified into two types: global path planning and local path 

planning. The aim of the global path planning algorithm is to 

figure out an optimal path using a geographical map of the 

environment deduced initially. Although, for controlling a real-

time UAV the task of global path planning is not enough, 

particularly when there are several other tasks that need to be 

carried out forthwith or unexpected hurdles emerging at the 

time of flight. Hence, there is a need for local path planning for 

estimating the path free from collisions in real-time by using 

data of the sensors taken from surrounding environments. 

1) Global path planning 

      Global path planner requires a priori geographical map of 

the surrounding environment with locations of starting and 

target points to compute a preliminary path, therefore the global 

map is also known as non-dynamic, that is static map. 

Generally, there are two kinds of algorithms that are used for 

global path planning: Heuristic searching techniques and a 

sequence of intelligent algorithms. In [46] authors proposed and 

developed an algorithm for planning the trajectory of multi-

UAV in static environments. The proposed algorithm includes 

three main stages: the generation of initial trajectory, the 

correction of trajectory, and the smooth trajectory planning. 

The first phase of the proposed algorithm can be achieved 

through MACO which incorporates metropolis measure into the 

node screening method of ant colony optimization (ACO) that 

can efficiently and effectively avoid cascading into the 

stagnation and local optimal solution. Then in the next phase of 

the algorithm the authors of this work proposed three different 

trajectory correction schemes for solving the problem of 

collision avoidance. Finally, the discontinuity resulting from 

the acute and edged turn in trajectory planning is resolved by 

using the inscribed circle (IC) smooth method. Results obtained 

through various laboratory experiments demonstrate the high 

effectiveness and feasibility of the proposed solution from 

perspectives of obstacle avoidance, optimal solution, and 

optimized trajectory in the problem of trajectory planning for 

UAVs. Yathirajam et al. (2020) [90] proposed a chain-based 

path planning approach for the generation of a feasible path for 

UAV in the ORB-SLAM framework with dynamic constraints 

on the length of the path and minimum turn radius. The 

presented path planning algorithm enumerates a set of nodes 

that could move in a force field, thereby permitting the rapid 

modifications of the path in real-time as cost function changes. 

Subsequently, Jayaweera and Hanoun (2020) [38] 

demonstrated a path planning algorithm for UAVs that enables 

them to follow ground moving targets. The proposed technique 

utilized a dynamic artificial potential field (D-APF), the 

trajectory generated by this algorithm is smooth and feasible to 

non-static environments with hindrance and capable of 

handling motion contour for the target moving on the ground 

considering the change in their direction and speed. The 

existing path planning techniques, such as graph-based 

algorithms and swarm intelligence algorithms are not capable 

of incorporating UAV dynamic models and flying time into 

evolution. In order to overcome these limitations of existing 

methods Shao et al, (2021) [74] proposed a hierarchical scheme 

for trajectory optimization with revised particle swarm 

optimization (PSO) and Gauss pseudospectral method (GPM). 

The proposed scheme is a two-layered approach. In the first 

layer, the authors designed a better version of PSO for path 

planning, then in the second layer after utilizing the waypoints 

in path generated by improved PSO, a fitted curve is 

constructed and used as the starting values for GPM. After 

comparing these initial values with the ones generated 

randomly, the authors conclude that the designed curve can 

improve the efficiency of GPM significantly. Further, the 

authors validate their presented scheme through plenty of 

simulations and the results obtained demonstrate that the 

proposed technique achieves much better efficiency as 

compared to existing path planning methods. 

 

i. Heuristic searching methods 

    The well-known heuristic search method A-star algorithm is 

the advanced form of the typical Dijkstra algorithm. In the past 

few decades, the A-star has been significantly evolved and 

improved, hence lots of enhanced heuristic search methods 

have been derived from it. A modified A-star algorithm and an 

orographic database were used in [87] for searching the best 

track and building a digital map respectively. The heuristic A-

star algorithm was used by the authors of [69], who first 

dissected the entire region into square mesh and then leveraged 

the A-star heuristic algorithm for finding the best path that is 

based on the value function of multiple points on the grid along 

the estimated path. In [82] authors proposed the sparse A-star 

search (SAS) for computing an optimal path, the presented 

heuristic search successfully minimizes the computational 

complexity by imposing additional impediments and 

limitations to the procedure of searching within space at the 

time of path planning. The D-star algorithm, another name for 

the dynamic A-star algorithm, was proposed and developed in 

[78] for computing an optimal path in a partially or completely 

unspecified dynamic environment. The algorithm keeps on 

improving and updating the map obtained from completely new 
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and unknown environments and then amending the path on 

detection of new obstacles on its path. Authors of [91] proposed 

sampling-based path planning similar to rapidly exploring 

random trees (RRT) that can generate an optimal path free from 

collision when no information of the surrounding environment 

is provided initially. In [71] authors proposed and developed a 

3D path planning solution for UAVs which makes them capable 

of figuring out a feasible, optimal, and collision-free path in 

complicated dynamic environments. In the proposed approach 

authors exploit a probabilistic graph in order to test allowable 

space without considering the existing obstacles. Whenever 

planning is required, then the A-star discrete search algorithm 

explores the generated probabilistic graph for obtaining an 

optimal collision-free path. Authors validate their proposed 

solution in the V-REP simulator and then incorporate it into a 

real-time UAV. As a kind of common obstacle in complex 3D 

environments, U-type obstacles might be responsible for 

confusing a UAV thus leading to a collision. Therefore, in order 

to overcome this limitation Zhang et al. (2019) [92] proposed 

and developed a state-of-the-art Ant-Colony Optimization 

(ACO)-based technique called Self Heuristic Ant (SHA) for the 

generation of the optimal, collision-free trajectory in 

unstructured 3D environments with solid U-type obstacles. In 

this approach authors first construct the whole space using a 

grid model of workspace and then a novel optimized method 

for path planning of UAV is designed. In order to present ACO 

deadlock, that is, trapping of ants in U-type obstacles in the 

absence of an ideal successor node, authors designed two 

different search approaches for selecting the succeeding path 

node. Furthermore, Self Heuristic Ant (SHA) is used for 

improving the efficacy of the ACO-based method. Finally, 

results obtained after conducting several deeply investigated 

experiments illustrate that the probability of deadlock state can 

be reduced to a great extent with the implementation of 

proposed search strategies. 

 

ii. Intelligent algorithms 

      In the past few decades, researchers tried a lot to work out 

trajectory planning problems using intelligent algorithms and 

proposed a variety of intelligent searching techniques. 

However, the most renowned intelligent algorithms are the 

simulated anneal arithmetic (SAA) algorithm and genetic 

algorithm. In [93] authors used the SAA methods and genetic 

algorithm in the computation of an optimal path. Crossover and 

mutation operations of genetic algorithm and criterion of 

Metropolis are used for the evaluation of adaptation function of 

the path, thereby improving the effectiveness of trajectory 

planning. Authors of [2] proposed and developed an optimized 

global path planning technique using the improved conjugate 

direction method and the simulated annealing algorithm. 

 

2) Local path planning 

      Local path planning methods exploit information of the local 

environment and state estimation of UAV to plan a collision-

free local path dynamically. Path planning in dynamic 

environments might become computationally expensive due to 

some unexpected aspects, such as the motion of obstacles in the 

dynamic environments. In order to overcome this problem, 

algorithms for local path planning need to be feasible and 

adaptive to the changing attributes of the surrounding 

environment, by using valuable data such as the shape, size, and 

position about different sections of the environment obtained 

from multiple sensing devices. 

 Conventional local path planning techniques include artificial 

potential field methods, neural network methods, fuzzy logic 

methods, and spatial search methods, etc. Some general 

methods for local path planning are discussed below. In [81] 

authors proposed an artificial field method to navigate a robot 

from the local environment into the domain of a metaphysical 

artificial potential field. The final point has the “attraction” as 

well as an object with “repulsion” to the navigating robot, hence 

these two forces are responsible for moving the robot towards 

the target location. An example of the usage of the artificial 

gravitational field method for computing the local path through 

the threat area of radar was given in [10]. Genetic algorithms 

can provide a typical framework for solving typical and 

complex problems of optimization, especially the ones that are 

related to the computation of an optimal path. These algorithms 

are inspired by the evolution and inheritance concepts of 

biological phenomena. Problems should be solved by 

leveraging the principle of “survival of the fittest and survival 

competition,” in order to obtain the best solution. A genetic 

algorithm consists of five main components: initial population, 

chromosome coding, genetic operation, fitness function, and 

control parameters. In [65] authors proposed a path planning 

solution based on a genetic algorithm for an aircraft. Under the 

confession of biological functions, neural networks are 

established as computational methods. An example of a local 

path planning technique implemented using Hopfield networks 

was given in [25]. In [64] researchers proposed an ant colony 

algorithm which is a new type of binocular algorithm inspired 

by the ant activity. It is a probabilistic optimization method that 

resembles the behavioral attributes of ants. This technique 

could accomplish good results by solving a series of onerous 

combinatorial optimizations. Table 3 provides an outline of 

different methods discussed for the task of path planning. 

 

B. Vision-based control 

 Shirai and Inoue(1973) [104] introduced the concept of vision-

based control in robotics in which the data collected from visual 

sensors is used for manipulating and controlling the motion of 

the autonomous robot. In that era, the performance of 

autonomous robots based on vision-based control was not 

achieved up to the desire, mainly due to the issue of extracting 

information from visual sensors. Since 1990, with the 

reasonable improvement in the computing power of personal 

computers, there has been a high growth of research and 

development in the field of computer vision-based techniques 

for robotics applications. After that, the vision-based control for 

unmanned aerial vehicles had been considered as an important 

research problem that needed to be worked upon and till now 

this is under rapid development with the objective of attaining 
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complete autonomy in UAVs. The several challenges that still 

exist in the vision based control of UAVs are obstacle 

recognition, collision avoidance, and delay in the transfer of 

information to the UAV regarding action that it needs to take. 

In the past few years, in order to overcome these limitations 

several strategies and solutions based on reinforcement 

learning, visual-inertial techniques, and hybrid approaches have 

been proposed. Few of them are mentioned here.  

Kendoul et al. (2008)[105] proposed an adaptive controller 

based vision-based control approach in which the UAV is 

capable of hovering at a certain height and tracking a given 

trajectory autonomously. The measurements from the inertial 

measurement unit are merged with the optical flow data for 

vehicle’s pose estimation and prediction of depth map with 

unknown scale factor use in obstacle detection. Then, finally 

the presented controller integrates all the measurements 

according to the control algorithm and provides the necessary 

commands to the UAV for autonomous navigation. In the 

progress of their previous work the Kendoul et al. (2009)[117] 

proposed a real time vision-based control for the UAV. The data 

from the downward looking camera equipped in the UAV was 

integrated with IMU measurements through an EKF, and then 

the obtained data was integrated with the designed non-linear 

controller for achieving the desired performance control of the 

UAV. Similarly, Carillo et al. (2012)[106] has developed a 

quadrotor UAV capable of carrying out autonomous take-off, 

navigation, and landing. The stereo camera and IMU sensors 

are installed in the UAV. The data from these sensors is merged 

using a Kalman filter for improving the accuracy of the 

quadrotor state estimation. The stereo visual odometry 

technique is used for determining the 3D motion of the camera 

in the environment. In order to leverage the integration of the 

data obtained through depth camera and inertial unit in 

controlling the UAV. Steggano et al. (2013)[107] proposed the 

design of a UAV platform equipped with a RGB-D camera and 

IMU sensors to achieve autonomous vision-based control and 

stabilization, especially in the teleoperations. And, the 

integration of the information from IMU and RGB-D sensors is 

used for the estimation of the UAV velocity, which is then used 

to control the UAV. Later on, the technique that utilized only a 

monocular camera for obtaining the control commands for 

UAV was proposed by Mannar et al. (2018)[108]. The authors 

of this work proposed and developed a vision-based control 

system to avoid aerial obstacles in a forest environment for a 

UAV. The proposed algorithm is the enhancement of the 

existing algorithm initially proposed by Michel [109] for 

vision-based obstacle avoidance in ground vehicles. The 

authors have used this algorithm for UAV control for the first 

time. The idea behind this algorithm is that the images captured 

by the monocular camera of UAV are first divided into various 

longitudinal strips then from each strip the texture features are 

extracted and the weighted combination of these texture 

features is used for the estimation of distance to the nearest 

obstacle. The weights of the prediction network are pre-

computed at the time of supervised training of the network on 

the correspondences of the features to the ground truth distance 

extracted from the image frames captured from a simulated 

forest environment. Then, corresponding to the longitudinal 

strip with minimum distance to the UAV, the real angle is 

calculated which is then processed further to obtain the 

appropriate yaw/velocity commands for UAV control. 

Subsequently, Hu and Wang (2018)[110] proposed the hand-

gesture based control system for a UAV. The deep learning 

method is trained on the dataset of gesture inputs to predict a 

suitable command for UAV control. First, the random hand 

gestures generated by the user are fed as an input input to the 

leap motion controller which consists of 2 optical sensors and 3 

infrared lights and it is responsible for converting the dynamic 

gestures information to the hand skeleton data and provide  this 

skeleton data to the data preprocessing unit which performs the 

task of feature selection and scaling on the output of the leap 

motion controller and creates the feature vectors. The composed 

feature vectors are delivered to the deep learning module which 

recognize the gesture and predict the appropriate command. 

Finally, the predicted control command is delivered to the UAV 

control module and it processes the prediction to extract the 

movement command and send it to the UAV over WiFi. In 

recent years, some researchers have also introduced 

reinforcement learning based strategies in the vision-based 

control problem of aerial vehicles in dynamic environments. 

Following this approach, Li et al. (2018)[111] proposed a 

machine learning based strategy for the autonomous tracking of 

a given target. The strategy combines UAV perception and 

control for following a specific target. The proposed approach 

leverages the integration of model-free policy gradient method 

and a PID controller for achieving stabilized navigation. The 

deep convolutional neural network is trained on the set of raw 

images for the classification of target and then model-free 

reinforcement learning technique is used for the generation of 

high level control actions. The high level actions are then 

converted to the low level UAV control commands by a PID 

controller which is then finally transferred to the quadrotor for 

real world navigation and control. Table 4 summarizes the 

above discussed vision-based UAV control methods. 

 

Table 3: Summary of important methods in path planning 

 

Types of Path 

planning  

Methods used References 

 Potential field  [38],[90] 

Global Optimization [46],[74] 

 Intelligent [2],[93] 

 Heuristic search [87],[82],[78],[91

],[92] 

 Hopfield [25] 

Local Artificial 

potential field 

[81],[10] 
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 Ant colony 

optimization 

[64] 

Table 4: Brief description of discussed vision-based control 

methods for UAV. 

 

UAV state 

estimation 

techniques 

Control methods 

used 

References 

Optical flow Adaptive 

controller 

[105],[107] 

Extended Kalman 

Filter 

Nonlinear 

Controller 

[117],[106] 

Deep learning Feature-based 

control 

[108] 

 Hand-gesture 

based control  

[110] 

Reinforcement 

learning 

PID controller [111] 

 

 

V. REAL-TIME EXPERIMENTS WITH AUTONOMOUS UAV 

 In this section we will describe some real time applications of 

vision-based autonomous UAV navigation in which researchers 

have designed a fully autonomous UAV system capable of 

navigating autonomously in 3-D dynamic environments and 

can be deployed for real-world applications like search and 

rescue, surveillance, target tracking, and for delivery products 

to the customers. Hulens et al. (2017)[112] designed a UAV 

system for autonomous navigation in a fruit orchard using an 

algorithm that estimates the centre point and end point of the 

orchard lane and then provides the necessary stabilization to the 

UAV by keeping it in the centre of the orchard and abstain it 

from colliding with the trees and walls of the orchard 

autonomously without any connection with the ground station. 

In order to attain complete autonomy the UAV is equipped with 

a front camera and on-board processing unit. The image stream 

from the camera passes to the on-board processing unit which 

processes the images and uses the obtained information for 

controlling the UAV and avoiding collision with surrounding 

obstacles. In order to keep the UAV in the centre of the orchard 

lane the authors proposed an algorithm that can estimate the 

vanishing point of the lane in which the UAV is navigating. 

Later on, in order to deploy the autonomous UAV in emergency 

services, Mittal et al. (2019)[113] proposed and developed a 

vision-based autonomous navigation strategy for a UAV to 

carry out the operation of search and rescue in urban areas after 

disastrous calamities like earthquakes, landslides, and floods, 

etc. In the proposed mechanism the UAV which is used for 

navigation in post disaster areas is equipped with several 

sensors like bioradar, GPS, IMU, barometer, stereo camera, and 

attitude controller. The proposed strategy consists of four steps: 

localization, mapping, detection of landing site, and landing 

trajectory estimation. In order to localize the UAV in previously 

unknown environments a robot-centric visual-inertial 

framework, robust visual-inertial odometry (ROVIO) is used. 

The  data from the downward looking camera of the UAV and 

IMU are fed to the ROVIO module for pose estimation. 

Furthermore, in order to avoid drift the state of the UAV 

estimated by the ROVIO unit is fused with data from other 

sensors such as barometer and GPS through Extended Kalman 

Filter (EKF). Then, the 3-D map of the environment is created 

using the depth obtained through the stereo camera of the UAV 

and the planning in the obtained occupancy grid is done using 

sampling based path planning algorithm, that is, rapidly 

exploring random trees (RRT) algorithm. Then, the next step is 

to find a flat platform free from obstacles upon which the UAV 

can land. This step is completed with the help of cost maps 

which are completed using the estimated pose and the depth 

map obtained from the stereo camera of the UAV. Then finally, 

collision free and minimum-jerk landing trajectory is designed 

using the RRT-star algorithm. Subsequently, Lin and Peng 

(2021)[114] proposed a real-time vision-based autonomous 

navigation approach for exploring outdoor environments. In 

this work, the authors leverage the static map-based offline path 

planning for generating an initial path using RRT for the UAV 

to follow and an online optical flow based method for avoiding 

dynamic obstacles. First the stream of images captured by the 

monocular camera of the UAV is fed to the preprocessing 

module which is responsible for performing tasks like image 

down-sampling, grayscaling, and noise removal, etc. Then, a 

red bounding-box, defined as the region of interest (region with 

motion vectors) is computed. After the determination of the 

region of interest the optical flow in the sequence of captured 

images is used to determine the motion vectors for obstacle 

detection and avoidance. These algorithms are implemented on 

the single onboard computer which is the control platform for 

real-time processing of this problem. However, several vision-

based strategies for real-time autonomous UAV navigation 

suffer from various illumination factors. As, in low illumination 

areas it would be very difficult for vision based algorithms to 

obtain the depth map of the environment for estimating the 

distance of the UAV from obstacles and for detecting the 

landing platform. In order to solve these issues, Lin et al. 

(2021)[115] presented a vision based system that can detect 

landing markers in low illumination areas for safe and efficient 

landing of UAVs. To improve the resolution quality and 

luminance of captured images and then the hierarchical learning 

based method consists of a rule-based classifier, decision tree 

and Convolutional neural networks for the localization of 

landing marker, the extracted feature information of the marker 

is used for state estimation and controlling the UAV during 

landing. The proposed scheme is verified with the real-time 

UAV during the nighttime where the quadrotor is required to 

land on the marker placed in the field.   
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VI.  CONCLUSIONS 

   This paper presented a discussion on autonomous vision-based 

UAV navigation mainly from three facets: localization and 

mapping, obstacle avoidance, and path planning. Localization 

and mapping are the core of autonomous UAV navigation, 

which are responsible for providing information about the 

environment and location. Collision avoidance and path 

planning are vital in order to make the UAV capable of reaching 

the target location safely and quickly without any collision. 

Several visual SLAM algorithms have been developed by the 

computer vision society, still, many of them cannot be 

leveraged directly for navigation of UAVs due to shortcomings 

posed by their processing power and their architecture. 

 Nonetheless, UAVs share similar navigation solutions with 

mobile ground robots but still, researchers are facing many 

challenges in the implementation of vision-based autonomous 

UAV navigation. The aerial vehicle is required to process a 

variety of sensors’ data in order to achieve safe and steady flight 

in real-time, especially the processing of visual data which 

increases the computational cost to a great extent. Thus, 

autonomous navigation of UAVs under limited consumption of 

power and computing resources has become a major challenge 

in the research field. It should also be noted that in contrast to 

ground vehicles UAVs are not able to just stop navigating in the 

state of great uncertainty, that is generation of incoherent 

commands can make the UAV unstable. Along with this, UAV 

could exhibit unpredictable behavior whenever the 

computational requirements are not sufficient to update attitude 

and velocity in time or in the case of hardware-mechanical 

failure. Therefore, researchers must put efforts in developing 

computer vision algorithms that possess the capability of 

responding quickly to the dynamic behavior of the 

environment. The development of such algorithms will help in 

improving the native ability of UAVs to navigate smoothly in 

various attitudes and orientations with sudden appearance and 

disappearance of targets and obstacles. Furthermore, 

autonomous UAV navigation needs a local or global 3D 

representation of the surrounding environments, thereby 

increasing the computation and storage overhead.   Hence, there 

are many challenges for long-time UAV navigation in complex 

environments. Besides that, tracking and localization collapse 

can happen in the course of UAV flight due to obscure motion 

caused by fast rotation and movement. Algorithms used for 

tracking objects should be robust against illumination, vehicle 

disturbances, noise, and occlusions. Otherwise, it will be very 

difficult for the tracker to figure out the trajectory of the target, 

and to operate in consonance with the controllers of UAV. 

Hence, highly sophisticated, erudite, and robust control 

schemes must exist for closing the loop optimally using visual 

data. Therefore, we are expecting research on loop detection 

and relocalization of UAV in the near future. In addition to this, 

we also found that a partial or complete 3D map of the 

environment  is not enough to figure out an obstacle-free path 

along with the optimization of the energy consumption or the 

length of the resulting path.  In contrast to 2D path planning, the 

challenges, and difficulties in 3D map construction of the 

environment increase rapidly as the intricacy of varying 

impediments and kinematics of UAVs increase.  Thus, no 

efficient solutions to this NP-hard problem exist, even 

contemporary path planning algorithms undergo the same 

problem of local minimum. Therefore, researchers are making 

a lot of efforts to discover a more efficient and robust algorithm 

for achieving global path optimization. The research work 

presented in this survey illustrates that few techniques are 

proved experimentally but many of the vision-based SLAM and 

obstacle avoidance techniques are not yet fully incorporated in 

the navigation controllers of autonomous UAVs, since the 

demonstrated methods either operate under some constraints in 

simple environments or their working is proved only through 

simulations. Therefore, influential engineering is necessary to 

move the current state-of-the-art a step ahead and for the 

evaluation of their performance in real-world environments. 

Another crucial finding from this review is that most of the 

flight tests discussed in the presented work were carried out on 

small commercial UAVs with increased payload for onboard 

processing units and multiple sensors. Yet, it can be understood 

from this discussion that trending research is focusing more on 

micro aerial vehicles that are capable of navigating indoors, 

outdoors and inspecting and maintaining target infrastructure 

utilizing their acrobatic maneuvering competencies. 
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